
Towards a Trustworthy Semantics-Based
Language Framework via Proof Generation

Xiaohong Chen1[0000−0003−3208−4061], Zhengyao Lin1[0000−0001−5475−5765],
Minh-Thai Trinh2[0000−0002−5716−9400], and Grigore Roşu1[0000−0002−3102−0421]

1 University of Illinois at Urbana-Champaign, USA
2 Advanced Digital Sciences Center, Illinois at Singapore

{xc3,zl38,trinhmt,grosu}@illinois.edu

Abstract. We pursue the vision of an ideal language framework, where
programming language designers only need to define the formal syntax
and semantics of their languages, and all language tools are automati-
cally generated by the framework. Due to the complexity of such a lan-
guage framework, it is a big challenge to ensure its trustworthiness and
to establish the correctness of the autogenerated language tools. In this
paper, we propose an innovative approach based on proof generation.
The key idea is to generate proof objects as correctness certificates for
each individual task that the language tools conduct, on a case-by-case
basis, and use a trustworthy proof checker to check the proof objects.
This way, we avoid formally verifying the entire framework, which is
practically impossible, and thus can make the language framework both
practical and trustworthy. As a first step, we formalize program execu-
tion as mathematical proofs and generate their complete proof objects.
The experimental result shows that the performance of our proof object
generation and proof checking is very promising.

Keywords: Semantic framework · Proof generation · Proof checking.

1 Introduction

Unlike natural languages that allow vagueness and ambiguity, programming lan-
guages must be precise and unambiguous. Only with rigorous definitions of pro-
gramming languages, called the formal semantics, can we guarantee the reliabil-
ity, safety, and security of computing systems.

Our vision is thus an ideal language framework based on the formal semantics
of programming languages. Shown in Figure 1, an ideal language framework is
one where language designers only need to define the formal syntax and semantics
of their language, and all language tools are automatically generated by the
framework. The correctness of these language tools is established by generating
complete mathematical proofs as certificates that can be automatically machine-
checked by a trustworthy proof checker.

The K language framework (https://kframework.org) is in pursuit of the
above ideal vision. It provides a simple and intuitive front end language (i.e.,

https://kframework.org

2 X. Chen et al.

Fig. 1: An ideal language framework vision; language tools are autogenerated,
with machine-checkable mathematical proofs as correctness certificates.

a meta-language) for language designers to define the formal syntax and seman-
tics of other programming languages. From such a formal language definition, the
framework automatically generates a set of language tools, including a parser,
an interpreter, a deductive verifier, a program equivalence checker, among many
others [9,24]. K has obtained much success in practice, and has been used to
define the complete executable formal semantics of many real-world languages,
such as C [12], Java [2], JavaScript [21], Python [13], Ethereum virtual machines
byte code [15], and x86-64 [10], from which their implementations and formal
analysis tools are automatically generated. Some commercial products [14,18]
are powered by these autogenerated implementations and/or tools.

What is missing in K (compared to the ideal vision in Figure 1) is its ability
to generate proof objects as correctness certificates. The current K implemen-
tation is a complex artifact with over 500,000 lines of code written in 4 pro-
gramming languages, with new code committed on a weekly basis. Its code base
includes complex data structures, algorithms, optimizations, and heuristics to
support the various features such as defining formal language syntax using BNF
grammar, defining computation configurations as constructor terms, defining
formal semantics using rewrite rules, specifying arbitrary evaluation strategies,
and defining the binding behaviors of binders (Section 3). The large code base
and rich features make it challenging to formally verify the correctness of K.

Our main contribution is the proposal of a practical approach to establish-
ing the correctness of a complex language framework, such as K, via proof object
generation. Our approach consists of the following main components:

1. A small logical foundation of K;
2. Proof parameters that are provided by K as the hints for proof generation;
3. A proof object generator that generates proof objects from proof parameters;

A Trustworthy Language Framework via Proof Generation 3

4. A fast and trustworthy third-party proof checker that verifies proof objects.

The key idea that makes our approach practical is that we establish the correct-
ness not for the entire framework, but for each individual language tasks that it
conducts, on a case-by-case basis. This idea is not limited to K but also appli-
cable to the existing language frameworks and/or formal semantics approaches.

As a first step, we formalize program execution as mathematical proofs and
generate their complete proof objects. The experimental result (Table 1) shows
promising performance of the proof object generation and proof checking. For
example, for a 100-step program execution trace, its complete proof object has
1.6 million lines of code that takes only 5.6 seconds to proof-check.

We organize the rest of the paper as follows. We give an overview of our
approach in Section 2. We introduce K and discuss the generation of proof pa-
rameters in Section 3. We discuss matching logic—the logical foundation of K—
in Section 4. We then compile K to matching logic in Section 5, and discuss
proof object generation in Section 6. We discuss the limitations of our current
implementation and show the experiment results in Sections 7 and 8, respec-
tively. Finally, we discuss related work in Section 9 and conclude the paper in
Section 10.

2 Our Approach Overview

We give an overview of our approach via the following four main components:
(1) a logical foundation of K, (2) proof parameters, (3) proof object generation,
and (4) a trustworthy proof checker.

Logical Foundation of K. Our approach is based on matching logic [22,5].
Matching logic is the logical foundation of K, in the following sense:

1. The K definition (i.e., the language definition in Figure 1) of a programming
language L corresponds to a matching logic theory ΓL, which, roughly speak-
ing, consists of a set of logical symbols that represents the formal syntax of
L, and a set of logical axioms that specify the formal semantics.

2. All language tools in Figure 1 and all language tasks that K conducts are for-
mally specified by matching logic formulas. For example, program execution
is specified (in our approach) by the following matching logic formula:

ϕinit ⇒ ϕfinal (1)

where ϕinit is the formula that specifies the initial state of the execution,
ϕfinal specifies the final state, and “⇒” states the rewriting/reachability re-
lation between states (see Section 5.1).

3. There exists a matching logic proof system that defines the provability re-
lation ` between theories and formulas. For example, the correctness of the
above execution from ϕinit to ϕfinal is witnessed by the formal proof:

ΓL ` ϕinit ⇒ ϕfinal (2)

4 X. Chen et al.

Therefore, matching logic is the logical foundation of K. The correctness of K
conducting one language task is reduced to the existence of a formal proof in
matching logic. Such formal proofs are encoded as proof objects, discussed below.

Proof Parameters. A proof parameter is the necessary information that K
should provide to help generate proof objects. For program execution, such as
Equation (2), the proof parameter includes the following information:

– the complete execution trace ϕ0, ϕ1, . . . , ϕn, where ϕ0 ≡ ϕinit and ϕn ≡
ϕfinal ; we call ϕ0, . . . , ϕn the intermediate snapshots of the execution;

– for each step from ϕi to ϕi+1, the rewriting information that consists of the
rewrite/semantic rule ϕlhs ⇒ ϕrhs that is applied, and the corresponding
substitution θ such that ϕlhsθ ≡ ϕi.

In other words, a proof parameter of a program execution trace contains the
complete information about how such an execution is carried out by K. The
proof parameter, once generated by K, is passed to the proof object generator
to generate the corresponding proof object, discussed below.

Proof Object Generation. In our approach, a proof object is an encoding of
matching logic formal proofs, such as Equation (2). Proof objects are generated
by a proof object generator from the proof parameters provided by K. At a high
level, a proof object for program execution, such as Equation (2), consists of:

1. the formalization of matching logic and its provability relation `;
2. the formalization of the formal semantics ΓL as a logical theory, which in-

cludes axioms that specify the rewrite/semantic rules ϕlhs ⇒ ϕrhs ;
3. the formal proofs of all one-step executions, i.e., ΓL ` ϕi ⇒ ϕi+1 for all i;
4. the formal proof of the final proof goal ΓL ` ϕinit ⇒ ϕfinal .

Our proof objects have a linear structure, which implies a nice separation of
concerns. Indeed, Item 1 is only about matching logic and is not specific to any
programming languages/language tasks, so we only need to develop and proof-
check it once and for all. Item 2 is specific to the language semantics ΓL but is
independent of the actual program executions, so it can be reused in the proof
objects of various language executions for the same programming language L.

A Trustworthy Proof Checker. A proof checker is a small program that
checks whether the formal proofs encoded in a proof object are correct. The proof
checker is the main trust base of our work. In this paper, we use Metamath [20]—
a third-party proof checking tool that is simple, fast, and trustworthy—to for-
malize matching logic and encode its formal proofs.

A Trustworthy Language Framework via Proof Generation 5

1 module IMP-SYNTAX

2 imports DOMAINS-SYNTAX

3 syntax Exp ::=

4 Int

5 | Id

6 | Exp "+" Exp [left, strict]

7 | Exp "-" Exp [left, strict]

8 | "(" Exp ")" [bracket]

9 syntax Stmt ::=

10 Id "=" Exp ";" [strict(2)]

11 | "if" "(" Exp ")"

12 Stmt Stmt [strict(1)]

13 | "while" "(" Exp ")" Stmt

14 | "{" Stmt "}" [bracket]

15 | "{" "}"

16 > Stmt Stmt [left, strict(1)]

17 syntax Pgm ::= "int" Ids ";" Stmt

18 syntax Ids ::= List{Id,","}

19 endmodule

20 module IMP imports IMP-SYNTAX

21 imports DOMAINS

22 syntax KResult ::= Int

23 configuration

24 <T> <k> $PGM:Pgm </k>

25 <state> .Map </state> </T>

26 rule <k> X:Id => I ...</k>

27 <state>... X |-> I ...</state>

28 rule I1 + I2 => I1 +Int I2

29 rule I1 - I2 => I1 -Int I2

30 rule <k> X = I:Int => I ...</k>

31 <state>... X |-> (_ => I) ...</state>

32 rule {} S:Stmt => S

33 rule if(I) S _ => S requires I =/=Int 0

34 rule if(0) _ S => S

35 rule while(B) S => if(B) {S while(B) S} {}

36 rule <k> int (X, Xs => Xs) ; S </k>

37 <state>... (. => X |-> 0) </state>

38 rule int .Ids ; S => S

39 endmodule

Fig. 2: The complete K formal definition of an imperative language IMP.

Summary. Our approach to establishing the correctness of K is based on its
logical foundation—matching logic. We formalize language semantics as logical
theories, and program executions as formulas and proof goals, whose proof ob-
jects are automatically generated and proof-checked. Our proof objects have a
linear structure that allows easy reuse of their components. The key character-
istics of our logical-based approach are the following:
– It is faithful to the real K implementation because proof objects are gener-

ated from proof parameters, which include all execution snapshots and the
actual rewriting information, provided by K.

– It is practical because proof objects are generated for each program execu-
tions on a case-by-case bases, avoiding the verification of the entire K.

– It is trustworthy because the autogenerated proof objects are checked using
the trustworthy third-party Metamath proof checker.

3 K Framework and Generation of Proof Parameters

3.1 K Overview

K is an effort in realizing the ideal language framework vision in Figure 1. An
easy way to understand K is to look at it as a meta-language that can define other
programming languages. In Figure 2, we show an example K language definition
of an imperative language IMP. In the 39-line definition, we completely define
the formal syntax and the (executable) formal semantics of IMP, using a front
end language that is easy to understand. From this language definition, K can
generate all language tools for IMP, including its parser, interpreter, verifier, etc.

We use IMP as an example to illustrate the main K features. There are two
modules: IMP-SYNTAX defines the syntax and IMP defines the semantics using
rewrite rules. Syntax is defined as BNF grammars. The keyword syntax leads

6 X. Chen et al.

production rules that can have attributes that specify the additional syntac-
tic and/or semantic information. For example, the syntax of if -statements is
defined in lines 11-12 and has the attribute [strict(1)] , meaning that the evalu-
ation order is strict in the first argument, i.e., the condition of an if -statement.

In the module IMP , we define the configurations of IMP and its formal se-
mantics. A configuration (lines 23-25) is a constructor term that has all semantic
information needed to execute programs. IMP configurations are simple, con-
sisting of the IMP code and a program state that maps variables to values. We
organize configurations using (semantic) cells: </k> is the cell of IMP code and
</state> is the cell of program states. In the initial configuration (lines 24-25),
</state> is empty and </k> contains the IMP program that we pass to K for
execution (represented by the special K variable $PGM).

We define formal semantics using rewrite rules. In lines 26-27, we define the
semantics of variable lookup, where we match on a variable X in the </k> cell
and look up its value I in the </state> cell, by matching on the binding X 7→ I .
Then, we rewrite X to I , denoted by X ⇒ I in the </k> cell in line 26. Rewrite
rules in K are similar to those in the rewrite engines such as Maude [7].

1 module TWO-COUNTERS

2 imports INT

3 syntax State ::= "<" Int "," Int ">"

4 configuration <T> $PGM:State </T>

5 rule <M, N> => <M -Int 1, N +Int M>

6 requires M >Int 0

7 endmodule

Fig. 3: Running example TWO-COUNTERS .

A Running Example. IMP is too
complex as a running example so we
introduce a simpler one: TWO-COUNTERS .
Although simple, TWO-COUNTERS still
uses the core features of defining for-
mal syntax as grammars and formal
semantics as rewrite rules.

TWO-COUNTERS is a tiny language that defines a state machine with two coun-
ters. Its computation configuration is simply a pair 〈m,n〉 of two integers m and
n, and its semantics is defined by the following (conditional) rewrite rule:

〈m,n〉 ⇒ 〈m− 1, n+m〉 if m > 0 (3)

Therefore, TWO-COUNTERS adds n by m and reduces m by 1. Starting from the
initial state 〈m, 0〉, TWO-COUNTERS carries out m execution steps and terminates
at the final state 〈0,m(m+ 1)/2〉, where m(m+ 1)/2 = m+ (m− 1) + · · ·+ 1.

3.2 Program Execution and Proof Parameters

In the following, we show a concrete program execution trace of TWO-COUNTERS

starting from the initial state 〈100, 0〉:

〈100, 0〉, 〈99, 100〉, 〈98, 199〉, . . . , 〈1, 5049〉, 〈0, 5050〉 (4)

To make K generate the above execution trace, we need to follow these steps:

1. Prepare the initial state 〈100, 0〉 in a source file, say 100.two-counters .
2. Compile the formal semantics TWO-COUNTERS into a matching logic theory,

explained in Section 5.

A Trustworthy Language Framework via Proof Generation 7

3. Use the K execution tool krun and pass the source file to it:

$ krun 100.two-counters --depth N

The option --depth N tells K to execute for N steps and output the (intermedi-
ate) snapshot. By letting N be 1, 2, . . . , we collect all snapshots in Equation (4).

The proof parameter of Equation (4) includes the additional rewriting infor-
mation for each execution step. That is, we need to know the rewrite rule that
is applied and the corresponding substitution. In TWO-COUNTERS , there is only one
rewrite rule, and the substitution can be easily obtained by pattern matching,
where we simply match the snapshot with the left-hand side of the rewrite rule.

Note that we regard K as a “black box”. We are not interested in its complex
internal algorithms. Instead, we hide such complexity by letting K generate proof
parameters that include enough information for proof object generation. This
way, we create a separation of concerns between K and proof object generation.
K can aim at optimizing the performance of the autogenerated language tools,
without making proof object generation more complex.

4 Matching Logic and Its Formalization

We review the syntax and proof system of matching logic—the logical foundation
of K. Then, we discuss its formalization, which is our main technical contribution
and is a critical component of the proof objects we generate for K (see Section 2).

4.1 Matching Logic Overview

Matching logic was proposed in [23] as a means to specify and reason about
programs compactly and modularly. The key concept is its formulas, called pat-
terns, which are used to specify program syntax and semantics in a uniform way.
Matching logic is known for its simplicity and rich expressiveness. In [22,5,6,4],
the authors developed matching logic theories that capture FOL, FOL-lfp, sepa-
ration logic, modal logic, temporal logics, Hoare logic, λ-calculus, type systems,
etc. In Section 5, we discuss the matching logic theories that capture K.

The syntax of matching logic is parametric in two sets of variables EV and
SV . We call EV the set of element variables, denoted x, y, . . . , and SV the set
of set variables, denoted X,Y,

Definition 1. A (matching logic) signature Σ is a set of (constant) symbols.
The set of Σ-patterns, denoted Pattern(Σ), is inductively defined as follows:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ

where in µX.ϕ we require that ϕ has no negative occurrences of X.

Thus, element variables, set variables, and symbols are patterns. ϕ1 ϕ2 is a
pattern, called application, where the first argument is applied to the second. We

8 X. Chen et al.

x[ψ/x] ≡ ψ y[ψ/x] ≡ y if y 6≡ x
σ[ψ/x] ≡ σ (ϕ1 → ϕ2)[ψ/x] ≡ ϕ[ψ1/x]→ ϕ2[ψ/x]

⊥[ψ/x] ≡ ⊥ (ϕ1 ϕ2)[ψ/x] ≡ (ϕ1[ψ/x]) (ϕ2[ψ/x])

(∃x. ϕ)[ψ/x] ≡ ∃x. ϕ (∃x. ϕ)[ψ/y] ≡ ∃z. ϕ[z/x][ψ/y] for fresh z
(µX.ϕ)[ψ/x] ≡ µZ.ϕ[Z/X][ψ/x] for fresh Z

Fig. 4: Capture-free substitution are defined in the usual way and formalized
later in Section 4.2 as a part of our proof objects.

have propositional connectives ⊥ and ϕ1 → ϕ2, existential quantification ∃x. ϕ,
and the least fixpoints µX.ϕ, from which the following notations are defined:

¬ϕ ≡ ϕ→ ⊥ > ≡ ¬⊥ ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ∀x. ϕ ≡ ¬∃x.¬ϕ νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]

We use fv(ϕ) to denote the free variables of ϕ, and ϕ[ψ/x] and ϕ[ψ/X] to denote
capture-free substitution. Their (usual) definitions are listed in Figure 4.

Matching logic has a pattern matching semantics, where a pattern ϕ is inter-
preted as the set of elements that match it. For example, ϕ1 ∧ ϕ2 is the pattern
that is matched by those matching both ϕ1 and ϕ2. Matching logic semantics is
not needed for proof object generation, so we exile it to [22,5].

We show the matching logic proof system in Figure 5, which defines the prov-
ability relation, written Γ ` ϕ, meaning that ϕ can be proved using the proof
system, with patterns in Γ added as additional axioms. We call Γ a match-
ing logic theory. The proof system is a main component of proof objects. To
understand it, we first need to define application contexts.

Definition 2. A context is a pattern C with a hole variable �. We write C[ϕ] ≡
C[ϕ/�] as the result of context plugging. We call C an application context, if
1. C ≡ � is the identity context; or
2. C ≡ ϕ C ′ or C ≡ C ′ ϕ, where C ′ is an application context and � 6∈ fv(ϕ).

That is, the path from the root to � in C has only applications.
The proof rules are sound and can be divided into 4 categories: FOL rea-

soning, frame reasoning, fixpoint reasoning, and some technical rules. The FOL
reasoning rules provide (complete) FOL reasoning (see, e.g., [25]). The frame
reasoning rules state that application contexts are commutative with disjunctive
connectives such as ∨ and ∃. The fixpoint reasoning rules support the stan-
dard fixpoint reasoning as in modal µ-calculus [17]. The technical proof rules are
needed for some completeness results (see [5] for details).

4.2 Formalizing Matching Logic

We discuss the formalization of matching logic, which is our first main contri-
bution and forms an important component in our proof objects (see Section 2).

A Trustworthy Language Framework via Proof Generation 9

FOL
Rules

(Propositional 1) ϕ→ (ψ → ϕ)

(Propositional 2) (ϕ→ (ψ → θ))→ ((ϕ→ ψ)→ (ϕ→ θ))

(Propositional 3) ((ϕ→ ⊥)→ ⊥)→ ϕ

(Modus Ponens)
ϕ ϕ→ ψ

ψ
(∃-Quantifier) ϕ[y/x]→ ∃x. ϕ

(∃-Generalization)
ϕ→ ψ

x /∈ FV (ψ)
(∃x. ϕ)→ ψ

Frame
Rules

(Propagation⊥) C[⊥]→ ⊥
(Propagation∨) C[ϕ ∨ ψ]→ C[ϕ] ∨ C[ψ]
(Propagation∃) C[∃x. ϕ]→ ∃x.C[ϕ] with x /∈ FV (C)

(Framing)
ϕ→ ψ

C[ϕ]→ C[ψ]

Fixpoint
Rules

(Substitution)

ϕ

ϕ[ψ/X]
(Prefixpoint) ϕ[(µX.ϕ)/X]→ µX.ϕ

(Knaster-Tarski)
ϕ[ψ/X]→ ψ

(µX.ϕ)→ ψ

Technical
Rules

{
(Existence) ∃x. x

(Singleton) ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

Fig. 5: Matching logic proof system (where C,C1, C2 are application contexts).

Metamath [20] is a tiny language to state abstract mathematics and their
proofs in a machine-checkable style. In our work, we use Metamath to formalize
matching logic and to encode our proof objects. We choose Metamath for its
simplicity and fast proof checking: Metamath proof checkers are often hundreds
lines of code and can proof-check thousands of theorems in a second.

Our formalization follows closely Section 4.1. We formalize the syntax of pat-
terns and the proof system. We also need to formalize some metalevel operations
such as free variables and capture-free substitution. An innovative contribution
is a generic way to handling notations (such as ¬ and ∧) in matching logic. The
resulting formalization has only 245 lines of code, which we show in [16]. This
formalization of matching logic is the main trust base of our proof objects.

Metamath Overview. We use an extract of our formalization of matching
logic (Figure 6) to explain the basic concepts in Metamath. At a high level, a
Metamath source file consists of a list of statements. The main ones are:

1. constant statements ($c) that declare Metamath constants;

10 X. Chen et al.

1 $c \imp () #Pattern |- $.

2
3 $v ph1 ph2 ph3 $.

4 ph1-is-pattern $f #Pattern ph1 $.

5 ph2-is-pattern $f #Pattern ph2 $.

6 ph3-is-pattern $f #Pattern ph3 $.

7 imp-is-pattern

8 $a #Pattern (\imp ph1 ph2) $.

9
10 axiom-1

11 $a |- (\imp ph1 (\imp ph2 ph1)) $.

12
13 axiom-2

14 $a |- (\imp (\imp ph1 (\imp ph2 ph3))

15 (\imp (\imp ph1 ph2)

16 (\imp ph1 ph3))) $.

17
18 ${

19 rule-mp.0 $e |- (\imp ph1 ph2) $.

20 rule-mp.1 $e |- ph1 $.

21 rule-mp $a |- ph2 $.

22 $}

23 imp-refl $p |- (\imp ph1 ph1)

24 $=

25 ph1-is-pattern ph1-is-pattern

26 ph1-is-pattern imp-is-pattern

27 imp-is-pattern ph1-is-pattern

28 ph1-is-pattern imp-is-pattern

29 ph1-is-pattern ph1-is-pattern

30 ph1-is-pattern imp-is-pattern

31 ph1-is-pattern imp-is-pattern

32 imp-is-pattern ph1-is-pattern

33 ph1-is-pattern ph1-is-pattern

34 imp-is-pattern imp-is-pattern

35 ph1-is-pattern ph1-is-pattern

36 imp-is-pattern imp-is-pattern

37 ph1-is-pattern ph1-is-pattern

38 ph1-is-pattern imp-is-pattern

39 ph1-is-pattern axiom-2

40 ph1-is-pattern ph1-is-pattern

41 ph1-is-pattern imp-is-pattern

42 axiom-1 rule-mp ph1-is-pattern

43 ph1-is-pattern axiom-1 rule-mp

44 $.

Fig. 6: An extract of the Metamath formalization of matching logic.

2. variable statements ($v) that declare Metamath variables, and floating state-
ments ($f) that declare their intended ranges;

3. axiomatic statements ($a) that declare Metamath axioms, which can be
associated with some essential statements ($e) that declare the premises;

4. provable statements ($p) that states a Metamath theorem and its proof.

Figure 6 defines the fragment of matching logic with only implications. We
declare five constants in a row in line 1, where \imp , (, and) build the
syntax, #Pattern is the type of patterns, and |- is the provability relation. We
declare three metavariables of patterns in lines 3-6, and the syntax of implication
ϕ1 → ϕ2 as (\imp ph1 ph2) in line 7. Then, we define matching logic proof rules
as Metamath axioms. For example, lines 18-22 define the rule (Modus Ponens).

In line 23, we show an example (meta-)theorem and its formal proof in Meta-
math. The theorem states that ` ϕ1 → ϕ1 holds, and its proof (lines 25-43) is a
sequence of labels referring to the previous axiomatic/provable statements.

Metamath proofs are very easy to proof-check, which is why we use it in our
work. The proof checker reads the labels in order and push them to a proof stack
S, which is initially empty. When a label l is read, the checker pops its premise
statements from S and pushes l itself. When all labels are consumed, the checker
checks whether S has exactly one statement, which should be the original proof
goal. If so, the proof is checked. Otherwise, it fails.

As an example, we look at the first 5 labels of the proof in Figure 6, line 25:

// Initially, the proof stack S is empty
ph1-is-pattern // S = [#Pattern ph1]
ph1-is-pattern // S = [#Pattern ph1 ; #Pattern ph1]
ph1-is-pattern // S = [#Pattern ph1 ; #Pattern ph1 ; #Pattern ph1]
imp-is-pattern // S = [#Pattern ph1 ; #Pattern (\imp ph1 ph1)]
imp-is-pattern // S = [#Pattern (\imp ph1 (\imp ph1 ph1))]

A Trustworthy Language Framework via Proof Generation 11

where we show the stack status in comments. The first label ph1-is-pattern

refers to a $f -statement without premises, so nothing is popped off, and the
corresponding statement #Pattern ph1 is pushed to the stack. The same hap-
pens, for the second and third labels. The fourth label imp-is-pattern refers to
a $a -statement with two metavariables of patterns, and thus has 2 premises.
Therefore, the top two statements in S are popped off, and the corresponding
conclusion #Pattern (\imp ph1 ph1) is pushed to S. The last label does the same,
popping off two premises and pushing #Pattern (\imp ph1 (\imp ph1 ph1)) to
S. Thus, these five proof steps prove the wellformedness of ϕ1 → (ϕ1 → ϕ1).

Formalizing Matching Logic Syntax. Now, we go through the formalization
of matching logic and emphasize some highlights. See [22,5,6] for full detail.

The syntax of patterns is formalized below, following Definition 1:

$c \bot \imp \app \exists \mu () $.

var-is-pattern $a #Pattern xX $.

symbol-is-pattern $a #Pattern sg0 $.

bot-is-pattern $a #Pattern \bot $.

imp-is-pattern $a #Pattern (\imp ph0 ph1) $.

app-is-pattern $a #Pattern (\app ph0 ph1) $.

exists-is-pattern $a #Pattern (\exists x ph0) $.

${ mu-is-pattern.0 $e #Positive X ph0 $.

mu-is-pattern $a #Pattern (\mu X ph0) $. $}

Note that we omit the declarations of metavariables (such as xX , sg0 , . . .)
because their meaning can be easily inferred. The only nontrivial case above is
mu-is-pattern , where we require that ph0 is positive in X , discussed below.

Metalevel Assertions. To formalize matching logic, we need the following
metalevel operations and/or assertions:

1. positive (and negative) occurrences of variables;
2. free variables;
3. capture-free substitution;
4. application contexts;
5. notations.

Item 1 is needed to define the syntax of µX.ϕ, while Items 2-5 are needed to
define the proof system (Figure 5). Here, we show how to define capture-free
substitution as an example. Notations are discussed in the next section.

To formalize capture-free substitution, we first define a Metamath constant

$c #Substitution $.

that serves as an assertion symbol: #Substitution ph ph’ ph” xX holds iff ph ≡
ph’ [ph” / xX]. Then, we can define substitution following Figure 4. The only
nontrivial case is when ph’ is ∃x. ϕ or µX.ϕ, in which case α-renaming is
required to avoid variable capture. We show the case when ph’ is ∃x. ϕ below:

12 X. Chen et al.

substitution-exists-shadowed

$a #Substitution (\exists x ph1) (\exists x ph1) ph0 x $.

${ $d xX x $.

$d y ph0 $.

substitution-exists.0 $e #Substitution ph2 ph1 y x $.

substitution-exists.1 $e #Substitution ph3 ph2 ph0 xX $.

substitution-exists

$a #Substitution (\exists y ph3) (\exists x ph1) ph0 xX $. $}

There are two cases, as expected from Figure 4. substitution-exists-shadowed is
when the substitution is shadowed. substitution-exists is the general case, where
we first rename x to a fresh variable y and then continue the substitution. The
$d -statements state that the substitution is not shadowed and y is fresh.

Supporting Notations. Notations (e.g., ¬ and ∧) play an important role in
matching logic. Many proof rules such as (Propagation∨) and (Singleton) use nota-
tions (see Figure 5). However, Metamath has no built-in support for notations.
To define a notation, say ¬ϕ ≡ ϕ→ ⊥, we need to (1) declare a constant \not

and add it to the pattern syntax; (2) define the equivalence relation ¬ϕ ≡ ϕ→ ⊥;
and (3) add a new case for \not to every metalevel assertions. While (1) and (2)
are reasonable, we want to avoid (3) because there are many metalevel assertions
and thus it creates duplication.

Therefore, we implement an innovative and generic method that allows us to
define any notations in a compact way. Our method is to declare a new constant
#Notation and use it to capture the congruence relation of sugaring/desugaring.
Using #Notation , it takes only three lines to define the notation ¬ϕ ≡ ϕ→ ⊥:

$c \not $.

not-is-pattern $a #Pattern (\not ph0) $.

not-is-sugar $a #Notation (\not ph0) (\imp ph0 \bot) $.

To make the above work, we need to state that #Notation is a congruence
relation with respect to the syntax of patterns and all the other metalevel asser-
tions. Firstly, we state that it is reflexive, symmetric, and transitive:

notation-reflexivity $a #Notation ph0 ph0 $.

${ notation-symmetry.0 $e #Notation ph0 ph1 $.

notation-symmetry $a #Notation ph1 ph0 $. $}

${ notation-transitivity.0 $e #Notation ph0 ph1 $.

notation-transitivity.1 $e #Notation ph1 ph2 $.

notation-transitivity $a #Notation ph0 ph2 $. $}

And the following is an example where we state that #Notation is a congruence
with respect to provability:

${ notation-provability.0 $e #Notation ph0 ph1 $.

notation-provability.1 $e |- ph0 $.

notation-provability $a |- ph1 $. $}

A Trustworthy Language Framework via Proof Generation 13

This way, we only need a fixed number of statements that state that #Notation

is a congruence, making it more compact and less duplicated to define notations.

Formalizing Proof System. With metalevel assertions and notations, it is
now straightforward to formalize matching logic proof rules. We have seen the
formalization of (Modus Ponens) in Figure 6. In the following, we formalize the
fixpoint proof rule (Kanaster-Tarski), whose premises use capture-free substitution:

${ rule-kt.0 $e #Substitution ph0 ph1 ph2 X $.

rule-kt.1 $e |- (\imp ph0 ph2) $.

rule-kt $a |- (\imp (\mu X ph1) ph2) $. $}

5 Compiling K into Matching Logic

To execute programs using K, we need to compile the K language definition for
language L into a matching logic theory, written ΓL (see Section 3.2). In this
section, we discuss this compilation process and show how to formalize ΓL.

5.1 Basic Matching Logic Theories

Firstly, we discuss the basic matching logic theories that are required by ΓL. We
discuss the theories of equality, sorts (and sorted functions), and rewriting.

Theory of Equality. By equality, we mean a (predicate) pattern ϕ1 = ϕ2 that
holds (i.e., equals to >) iff ϕ1 equals to ϕ2, and fails (i.e., equals to ⊥) otherwise.
We first need to define definedness dϕe, which is a predicate pattern that states
that ϕ is defined, i.e., ϕ is matched by at least one element: ϕ is not ⊥.

Definition 3. Consider a symbol d_e ∈ Σ, called the definedness symbol. We
write dϕe for the application d_e ϕ. In addition, we define the following axiom:

(Definedness) dxe (5)

(Definedness) states that any element x is defined. Using the definedness sym-
bol, we can define many important mathematical instruments, including equality,
as the following notations:

bϕc ≡ ¬d¬ϕe // Totality ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c // Equality
ϕ1 ⊆ ϕ2 ≡ bϕ1 → ϕ2c // Inclusion x ∈ ϕ ≡ dx ∧ ϕe // Membership

[22, Section 5.1] shows that the above indeed capture the intended semantics.

14 X. Chen et al.

Theory of Sorts. Matching logic is not sorted, but K is. To compile K into
matching logic, we need a systematic way to dealing with sorts. We follow the
“sort-as-predicate” paradigm to handle sorts and sorted functions in matching
logic, following [6,4]. The main idea is to define a symbol J_K ∈ Σ, called the
inhabitant symbol, and use the inhabitant pattern JsK (abbreviated for the appli-
cation J_K s) to represent the inhabitant set of sort s. For example, to define a
sort Nat , we define a corresponding symbol Nat that represents the sort name,
and use JNatK to represent the set of all natural numbers.

Sorted functions can be axiomatized as special matching logic symbols. For
example, the successor function succ of natural numbers is a symbol with axiom:

∀x. x ∈ JNatK→ ∃y. y ∈ JNatK ∧ succ x = y (6)

In other words, for any x in the inhabitant set of Nat , there exists a y in the
inhabitant set of Nat such that succ x equals to y. Thus, succ is a sorted function
from Nat to Nat .

Theory of Rewriting. Recall that in K, the formal language semantics is
defined using rewrite rules, which essentially define a transition system over
computation configurations. In matching logic, a transition system can be cap-
tured by only one symbol • ∈ Σ, called one-path next, with the intuition that
for any configuration γ, •γ is matched by all configurations that can go to γ in
one step. In other words, γ is reached on one-path in the next configuration.

Program execution is the reflexive and transitive closure of one-path next.
Formally, we define program execution (i.e., rewriting) as follows:

�ϕ ≡ µX.ϕ ∨ •X // Eventually; equals to ϕ ∨ •ϕ ∨ ••ϕ ∨ . . .
ϕ1 ⇒ ϕ2 ≡ ϕ1 → �ϕ2 // Rewriting

5.2 Kore: The Intermediate Between K and Matching Logic

The K compilation tool kompile (explained shortly) is what compiles a K lan-
guage definition into a matching logic theory ΓL, written in a formal language
called Kore. For legacy reasons, the Kore language is not the same as the syntax
of matching logic (Definition 1), but an axiomatic extension with equality, sorts,
and rewriting. Thus, to formalize ΓL in proof objects, we need to (1) formalize
the matching logic theories of equality, sorts, and rewriting; and (2) automati-
cally translate Kore definitions into the corresponding matching logic theories.
Figure 7 shows the 2-phase translation from K to matching logic, via Kore.

Phase 1: From K to Kore. To compile a K definition such as two-counters.k in
Figure 3, we pass it to the K compilation tool kompile as follows:

$ kompile two-counters.k

The result is a compiled Kore definition two-counters.kore . We show the auto-
generated Kore axiom in Figure 7 that corresponds to the rewrite rule in Equa-
tion (3). As we can see, Kore is a much lower-level language than K, where the
programming language concrete syntax and K’s front end syntax are parsed and
replaced by the abstract syntax trees, represented by the constructor terms.

A Trustworthy Language Framework via Proof Generation 15

Fig. 7: Automatic translation from K to matching logic, via Kore

Phase 2: From Kore to Matching Logic. We develop an automatic encoder that
translates Kore syntax into matching logic patterns. Since Kore is essentially the
theory of equality, sorts, and rewriting, we can define the syntactic constructs
of the Kore language as notations, using the basic theories in Section 5.1.

6 Generating Proof Objects for Program Execution

In this section, we discuss how to generate proof objects for program execution,
based on the formalization of matching logic and K/Kore in Sections 4 and 5.
The key step is to generate proof objects for one-step executions, which are
then put together to build the proof objects for multi-step executions using the
transitivity of the rewriting relation. Thus, we focus on the process of generating
proof objects for one-step executions from the proof parameters provided by K.

6.1 Problem Formulation

Consider the following K definition that consists ofK (conditional) rewrite rules:

S = {tk ∧ pk ⇒ sk | k = 1, 2, . . . ,K}

where tk and sk are the left- and right-hand sides of the rewrite rule, respectively,
and pk is the rewriting condition. Consider the following execution trace:

ϕ0, ϕ1, . . . , ϕn (7)

where ϕ0, . . . , ϕn are snapshots. We letK generate the following proof parameter:

Θ ≡ (k0, θ0), . . . , (kn−1, θn−1) (8)

where for each 0 ≤ i < n, ki denotes the rewrite rule that is applied on ϕi

(1 ≤ ki ≤ K) and θi denotes the corresponding substitution such that tkiθi = ϕi.
As an example, the rewrite rule of TWO-COUNTERS , restated below:

〈m,n〉 ⇒ 〈m− 1, n+m〉 if m > 0 // Same as Equation (3)

has the left-hand side tk ≡ 〈m,n〉, the right-hand side sk ≡ 〈m− 1, n+m〉, and
the condition pk ≡ m ≥ 0. Note that the right-hand side pattern sk contains
the arithmetic operations “+” and “−” that can be further evaluated to a value,
if concrete instances of the variables m and n are given. Generally speaking,
the right-hand side of a rewrite rule may include (built-in or user-defined) func-
tions that are not constructors and thus can be further evaluated. We call such
evaluation process a simplification.

16 X. Chen et al.

6.2 Applying Rewrite Rules and Applying Simplifications

In the following, we list all proof objects for one-step executions.

ΓL ` ϕ0 ⇒ sk0θ0 // by applying tk0 ∧ pk0 ⇒ sk0 using θ0
ΓL ` sk0

θ0 = ϕ1 // by simplifying sk0
θ0

· · ·
ΓL ` ϕn−1 ⇒ skn−1

θn−1 // by applying tkn−1
∧ pkn−1

⇒ skn−1
using θn−1

ΓL ` skn−1θn−1 = ϕn // by simplifying skn−1θn−1

As we can see, there are two types of proof objects: one that proves the results
of applying rewrite rules and one that applies simplification.

Applying Rewrite Rules. The main steps in proving ΓL ` ϕi ⇒ ski
θi are

(1) to instantiate the rewrite rule tki
∧ pki

⇒ ski
using the substitution

θi = [c1/x1, . . . , cm/xm]

given in the proof parameter, and (2) to show that the (instantiated) rewriting
condition pki

θi holds. Here, x1, . . . , xm are the variables that occur in the rewrite
rule and c1, . . . , cm are terms by which we instantiate the variables. For (1), we
need to first prove the following lemma, called (Functional Substitution) in [5], which
states that ∀-quantification can be instantiated by functional patterns:

∀~x. tk1
∧ pki

⇒ ski
∃y1. ϕ1 = y1 · · · ∃ym. ϕm = ym

y1, . . . , ym fresh
tkiθi ∧ pkiθi ⇒ skiθi

Intuitively, the premise ∃y1. ϕ1 = y1 states that ϕ1 is a functional pattern be-
cause it equals to some element y1.

If Θ in Equation (8) is the correct proof parameter, θi is the correct substitu-
tion and thus tki

θi ≡ ϕi. Therefore, to prove the original proof goal for one-step
execution, i.e. ΓL ` ϕi ⇒ ski

θi, we only need to prove that ΓL ` pki
θi, i.e., the

rewriting condition pki holds under θi. This is done by simplifying pkiθi to >,
discussed together with the simplification process in the following.

Applying Simplifications. K carries out simplification exhaustively before
trying to apply a rewrite rule, and simplifications are done by applying (oriented)
equations. Generally speaking, let s be a functional pattern and p → t = t′ be
a (conditional) equation, we say that s can be simplified w.r.t. p → t = t′, if
there is a sub-pattern s0 of s (written s ≡ C[s0] where C is a context) and a
substitution θ such that s0 = tθ and pθ holds. The resulting simplified pattern is
denoted C[t′θ]. Therefore, a proof object of the above simplification consists of
two proofs: ΓL ` s = C[t′θ] and ΓL ` pθ. The latter can be handled recursively,
by simplifying pθ to >, so we only need to consider the former.

The main steps of proving ΓL ` s = C[t′θ] are the following:

A Trustworthy Language Framework via Proof Generation 17

1. to find C, s0, θ, and t = t′ in ΓL such that s ≡ C[s0] and s0 = tθ; in other
words, s can be simplified w.r.t. t = t′ at the sub-pattern s0;

2. to prove ΓL ` s0 = t′θ by instantiating t = t′ using the substitution θ, using
the same (Functional Substitution) lemma as above;

3. to prove ΓL ` C[s0] = C[t′] using the transitivity of equality.

Finally, we repeat the above one-step simplifications until no sub-patterns
can be simplified further. The resulting proof objects are then put together by
the transitivity of equality.

7 Discussion on Implementation

As discussed in Section 2, a complete proof object for program execution (i.e.,
ΓL ` ϕinit ⇒ ϕfinal) consists of (1) the formalization of matching logic and its
basic theories; (2) the formalization of ΓL; and (3) the proofs of one-step and
multi-step program executions. In our implementation, (1) is developed manually
because it is fixed for all programming languages and program executions. (2)
and (3) are automatically generated by the algorithms in Section 6.

During the (manual) development of (1), we needed to prove many basic
matching logic (meta-)theorems as lemmas, such as (Functional Substitution) in
Section 6.2. To ease the manual work, we developed an interactive theorem prover
(ITP) for matching logic, which allows us to carry out higher-level interactive
proofs that are later automatically translated into the lower-level Metamath
proofs. We show the highlights of our ITP for matching logic in Section 7.1.

In Section 7.2, we discuss the main limitations of our current preliminary
implementation. These limitations are planned to be addressed in future work.

7.1 An Interactive Theorem Prover for Matching Logic

Metamath proofs are low-level and not human readable (see, e.g., the proof
of ` ϕ → ϕ in Figure 6). Metamath has its own interactive theorem prover
(ITP), but it is for general purposes and does not have specific support for
matching logic. Therefore, we developed a new ITP for matching logic that has
the following characteristic features:

– Our ITP understands the syntax of matching logic patterns and has proof
tactics to desugar notations in the proof goals;

– Our ITP has an automatic proof tactic for propositional tautologies, based
on the resolution method;

– Our ITP allows dynamic proofs, meaning that new lemmas can be dynami-
cally added during an interactive proof; this makes our ITP easier to use.

When an interactive proof is finished, our ITP will translate the higher-level
proof tactics into real Metamath formal proofs, and thus ease the manual de-
velopment. It is not our interest to fully introduce ITP in this paper, as more
detail about the ITP is to be found in future publications.

18 X. Chen et al.

7.2 Limitations and Threats to Validity

We discuss the trust base of the autogenerated proof objects by pointing out the
main threats to validity, caused by the limitations of our preliminary implemen-
tation. It should be noted that these limitations are about the implementation,
and not our approach. We shall address these limitations in future work.

Limitation 1: Need to trust Kore. Our current implementation is based on
the existing K compilation tool kompile that compiles K into Kore definitions.
Recall that Kore is a (legacy) formal language with built-in support for equality,
sorts, and rewriting, and thus is different (and more complex) than the syntax
of matching logic. By using Kore as the intermediate between K and matching
logic (Figure 7), we need to trust Kore and the K complication tool kompile .

In the future, we will eliminate Kore entirely from the picture and formalize
K directly. To do that, we need to formalize the “front end matters” of K, such as
concrete programming language syntax and K attributes, currently handled by
kompile . That is, we need to formalize and generate proof objects for kompile .

Limitation 2: Need to trust domain reasoning. K has built-in support for
domain reasoning such as integer arithmetic. Our current proof objects do not
include the formal proofs of such domain reasoning, but instead regard them
as assumed lemmas. In the future, we will incorporate the existing research on
generating proof objects for SMT solvers [1] into our implementation, in order
to generate proof objects also for domain reasoning; see also Section 9.

Limitation 3: Do not support more complex K features. Our current
implementation only supports the core K features of defining programming lan-
guage syntax and of defining formal semantics as rewrite rules. Some more com-
plex features are not supported; the main ones are (1) the [strict] attributes
that specify evaluation orders; and (2) the use of built-in collection datatypes,
such as lists, sets, and maps.

To support (1), we should handle the so-called heating/cooling rules that are
autogenerated rewrite rules that implement the specified evaluation orders. Our
current implementation does not support these heating/cooling rules because
they are conditional rules, and their conditions are those that state that an
element is not a computation result. To prove such conditions, we need additional
constructors axioms for the sorts/types that represent results of computation.
To support (2), we should extend our algorithms in Section 6 with unification
modulo these collection datatypes.

8 Evaluation

In this section, we evaluate the performance of our implementation and discuss
the experiment results, summarized in Table 1. We use two sets of benchmarks.

A Trustworthy Language Framework via Proof Generation 19

Table 1: Performance of proof generation/checking (time measured in seconds).

programs proof generation proof checking proof size

sem rewrite total logic task total kLOC MB

10.two-counters 5.95 12.19 18.13 3.26 0.19 3.44 963.8 77
20.two-counters 6.31 24.33 30.65 3.41 0.38 3.79 1036.5 83
50.two-counters 6.48 73.09 79.57 3.52 0.98 4.50 1259.2 100
100.two-counters 6.75 177.55 184.30 3.50 2.10 5.60 1635.6 130
add8 11.59 153.34 164.92 3.40 3.09 6.48 1986.8 159
factorial 3.84 34.63 38.46 3.57 0.90 4.47 1217.9 97
fibonacci 4.50 12.51 17.01 3.44 0.21 3.65 971.7 77
benchexpr 8.41 53.22 61.62 3.61 0.80 4.41 1191.3 95
benchsym 8.79 47.71 56.50 3.53 0.72 4.25 1163.4 93
benchtree 8.80 26.86 35.66 3.47 0.32 3.80 1021.5 81
langton 5.26 23.07 28.33 3.46 0.40 3.86 1048.0 84
mul8 14.39 279.97 294.36 3.48 7.18 10.66 3499.2 280
revelt 4.98 51.83 56.81 3.35 1.10 4.45 1317.4 105
revnat 4.81 123.44 128.25 3.37 5.28 8.65 2691.9 215
tautologyhard 5.16 400.89 406.05 3.55 14.50 18.04 6884.7 550

The first is our running example TWO-COUNTERS with different inputs (10, 20, 50,
and 100). The second is REC [11], which is a popular performance benchmark for
rewriting engines. We evaluate both the performance of proof object generation
and that of proof checking. Our implementation can be found in [16] and [3].

The main takeaways of our experiments are:

1. Proof checking is efficient and takes a few seconds; in particular, the task-
specific checking time is often less than one second (“task” column in Table 1).

2. Proof object generation is slower and takes several minutes.
3. Proof objects are huge, often of millions LOC (wrapped at 80 characters).

Proof Object Generation. We measure the proof object generation time as
the time to generate complete proof objects following the algorithms in Sec-
tion 6, from the compiled language semantics (i.e., Kore definitions) and proof
parameters. As shown in Table 1, proof generation takes around 17–406 seconds
on the benchmarks, and the average is 107 seconds.

Proof object generation can be divided into two parts: that of the language
semantics ΓL and that of the (one-step and multi-step) program executions. Both
parts are shown in Table 1 under columns “sem” and “rewrite”, respectively. For
the same language, the time to generate language semantics ΓL is the same (up
to experimental error). The time for executions is linear to the number of steps.

Proof Checking. Proof checking is efficient and takes a few seconds on our
benchmarks. We can divide the proof checking time into two parts: that of the

20 X. Chen et al.

logical foundation and that of the actual program execution tasks. Both parts
are shown in Table 1 under columns “logic” and “task”. The “logic” part includes
formalization of matching logic and its basic theories, and thus is fixed for any
programming language and program and has the same proof checking time (up
to experimental error). The “task” part includes the language semantics and
proof objects for the one-step and multi-step executions. Therefore, the time to
check the “task” part is a more valuable and realistic measure, and according to
our experiments, it is often less than 1 second, making it acceptable in practice.

As a pleasant surprise, the time for “task-specific”proof checking is roughly
the same as the time that it takes K to parse and execute the programs. In other
words, there is no significant performance difference on our benchmarks between
running the programs directly in K and checking the proof objects.

There exists much potential to optimize the performance of proof checking
and make it even faster than program execution. For example, in our approach
proof checking is an embarrassingly parallel problem, because each meta-theorems
can be proof-checked entirely independently. Therefore, we can significantly re-
duce the proof checking time by running multiple checkers in parallel.

9 Related Work

The idea of using proof generation to address the functional correctness of com-
plicated systems has been introduced a long time ago.

Interactive theorem provers such as Coq [19] and Isabelle [26] are often used
to formalize programming language semantics and to reason about program
properties. These provers often provide a high-level proof script language that
allows the users to develop human-readable proofs, which are then automatically
translated into lower-level proof objects that can be checked by the corresponding
proof checkers. For example, the proof objects of Coq are of the form t : t′, where
t′ is a term that represents the proposition to be proved and t′ represents a formal
proof. The typing claim t : t′ can then be proof-checked by a proof checker that
implements the typing rules of the calculus of inductive constructions (CIC) [8],
which is the logical foundation of Coq.

There are two main differences between provers such as Coq and our tech-
nique. Firstly, Coq is not regarded as a language framework in the sense of
Figure 1 because no language tools are autogenerated from the formal seman-
tics. In our case, we need to be able to handle the correctness of individual tasks
on a case-by-case basis to reduce the complexity. Secondly, Coq proof checking
is based on CIC, which is arguably more complex than matching logic—the log-
ical foundation of K as demonstrated in this paper. Indeed, the formalization of
matching logic requires only 245 LOC which we display entirely in [16].

Another application of proof generation is to ensure the correctness of SMT
solvers. These are popular tools to check the satisfiability of FOL formulas, writ-
ten in a formal language containing interpreted functions and predicates. SMT
solvers often implement complex data structures and algorithms, putting their
correctness at risk. There is recent work such as [1] studying proof generation

A Trustworthy Language Framework via Proof Generation 21

for SMT solvers. The research has been incorporated in theorem provers such as
Lean, which attempts to bridge the gap between SMT reasoning and proof assis-
tants more directly by building a proof assistant with efficient and sophisticated
built-in SMT capabilities. As discussed in Section 7, our current implementation
does not generate proofs for domain reasoning. So, we plan to incorporate the
above SMT proof generation work into our future implementation.

10 Conclusion

We propose an innovative approach based on proof generation. The key idea is
to generate proof objects as proof certificates for each individual task that the
language tools conduct, on a case-by-case basis. This way, we avoid formally
verifying the entire framework, which is practically impossible, and thus can
make the language framework both practical and trustworthy.

Acknowledgment. The work presented in this paper was supported in part
by NSF CNS 16-19275 and an IOHK grant. This material is based upon work
supported by the United States Air Force and DARPA under Contract No.
FA8750-18-C-0092.

References

1. Clark Barrett, Leonardo De Moura, and Pascal Fontaine. Proofs in satisfiability
modulo theories. All about proofs, Proofs for all, 55(1):23–44, 2015.

2. Denis Bogdănaş and Grigore Roşu. K-Java: A complete semantics of Java. In
Proceedings of the 42nd Symposium on Principles of Programming Languages
(POPL’15), pages 445–456, Mumbai, India, 2015. ACM.

3. Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Roşu. Towards
a trustworthy semantics-based language framework via proof generation (artifact
image). Available at https://zenodo.org/record/4701997#.YIAywHX0mso., 2021.

4. Xiaohong Chen, Dorel Lucanu, and Grigore Roşu. Initial algebra semantics in
matching logic. Technical Report http://hdl.handle.net/2142/107781, University
of Illinois at Urbana-Champaign, July 2020.

5. Xiaohong Chen and Grigore Roşu. Matching µ-logic. In Proceedings of the 34th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’19), pages
1–13, Vancouver, Canada, 2019. IEEE.

6. Xiaohong Chen and Grigore Roşu. A general approach to define binders using
matching logic. In Proceedings of the 25th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’20), pages 1–32, New Jersey, USA, 2020.
ACM.

7. Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln,
Narciso Martí-Oliet, José Meseguer, Rubén Rubio, and Carolyn Talcott. Maude
manual (version 3.0). SRI International, 2020.

8. Coq Team. Coq documents: Calculus of inductive constructions. Online at https:

//coq.inria.fr/refman/language/cic.html., 2020.

https://zenodo.org/record/4701997#.YIAywHX0mso
https://coq.inria.fr/refman/language/cic.html
https://coq.inria.fr/refman/language/cic.html

22 X. Chen et al.

9. Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu.
Semantics-based program verifiers for all languages. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’16), pages 74–91. ACM, 2016.

10. Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and
Grigore Roşu. A complete formal semantics of x86-64 user-level instruction set
architecture. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’19), pages 1133–1148, Phoenix,
Arizona, USA, 2019. ACM.

11. Francisco Durán and Hubert Garavel. The rewrite engines competitions: a RECtro-
spective. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
93–100, Cham, 2019. Springer International Publishing.

12. Chucky Ellison and Grigore Rosu. An executable formal semantics of C with
applications. ACM SIGPLAN Notices, 47(1):533–544, 2012.

13. Dwight Guth. A formal semantics of Python 3.3. 2013.
14. Dwight Guth, Chris Hathhorn, Manasvi Saxena, and Grigore Roşu. RV-Match:

Practical semantics-based program analysis. In Proceedings of the 28th Interna-
tional Conference on Computer Aided Verification (CAV’16), volume 9779, pages
447–453. Springer, 2016.

15. Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip
Daian, Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu,
and Grigore Roşu. KEVM: A complete semantics of the Ethereum virtual ma-
chine. In Proceedings of the 2018 IEEE Computer Security Foundations Symposium
(CSF’18), pages 204–217, Oxford, UK, 2018. IEEE. http://jellopaper.org.

16. K Team. Matching logic proof checker. GitHub page https://github.com/kframework/
matching-logic-proof-checker, 2021.

17. Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27(3):333–354, 1983.

18. Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Şerbănuţă, and Grigore Roşu. RV-Monitor: Efficient parametric
runtime verification with simultaneous properties. In Proceedings of the 5th Inter-
national Conference on Runtime Verification (RV’14), pages 285–300, 2014.

19. Coq Team. The Coq proof assistant. LogiCal Project, 2020.
20. Norman Megill and David A. Wheeler. Metamath: a computer language for math-

ematical proofs. Lulu. com, 2019.
21. Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A complete formal se-

mantics of JavaScript. In Proceedings of the 36th annual ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’15), pages
346–356, Portland, OR, 2015. ACM.

22. Grigore Roşu. Matching logic. Logical Methods in Computer Science, 13(4):1–61,
2017.

23. Grigore Roşu and Wolfram Schulte. Matching logic—extended report. Technical
Report Department of Computer Science UIUCDCS-R-2009-3026, University of
Illinois at Urbana-Champaign, January 2009.

24. Grigore Rosu. K—A semantic framework for programming languages and formal
analysis tools. In Dependable Software Systems Engineering. IOS Press, 2017.

25. Joseph R. Shoenfield. Mathematical logic. Addison-Wesley Pub. Co, 1967.
26. The Isabelle development team. Isabelle, 2018. https://isabelle.in.tum.de/.

http://jellopaper.org
https://github.com/kframework/matching-logic-proof-checker
https://github.com/kframework/matching-logic-proof-checker
https://isabelle.in.tum.de/

	Towards a Trustworthy Semantics-Based Language Framework via Proof Generation

